伝統的木造建築の構造調査と感度解析による耐震性能評価

小島 知成

1. はじめに

日本各地に点在する伝統的木造建築は,単なる建て 替えより費用を要するにも関わらず, それに特有の魅 力から、改修工事を経て利活用される事例も珍しくな い.一方、構法に地域性が認められるなど、個別性が 高いことから, 改修を検討する上でその構造性能を評 価することは一般に困難で, さらなる知見の蓄積が不 可欠と言える.本研究はこれらを背景に,福岡市西区 に所在する築 150 年程度の酒蔵を対象として、その 構造性能を現地調査によって調べた結果と共に, フレ ーム解析を併用して耐震性能の評価を試みたものであ る. 以降では、まず 3D スキャンによる測量結果より、 三次元モデルと各種の図面を用意し、それを構造調査 によって精査した結果を示す. 続いて, 整理した建物 情報よりフレーム解析モデルを構築し,特に伝統的木 造建築の耐震性能を左右する接合部の特性を変動因子 とした感度解析を実施し、さらに今後計画されている 構造補強の観点から耐震性能を推定した結果を示す.

2. 伝統的木造建築の構造調査

2.1 対象建物の概要

対象建物の概要を表 1 に記載する. 建物は, 図 1 に示すように, 2 度の増築がされており, それぞれ増 築部 1, 増築部 2 とする. なお, 増築時期に関しては 不明である. 本研究では, 増築部 2 を対象として検討 を行う.

表 1 対象建物の概要

建築物の名称	杉能舎
建築場所	福岡市西区
主亜田法	1 階:作業場
土女用巫	2 階:倉庫
建築様式	土蔵
延床面積	813m²
建築面積	500m²
構造	伝統木造
階数	地上2階
最高高さ	8.834m
	※増築部2に関して記載

図 1 対象建物と対象範囲

2.2 調査手法

構造調査は 2021 年 8 月に実施した.調査では, 各部構造を採寸し構造要素・種別を把握するとともに, 対象建築物の傾きを把握するため現況の各階の層間変 形角を計測した.本研究では,各部構造の寸法及び層 間変形角を,主に 3D スキャンによって測定した.図 2 に 3D スキャンにより得られた点群モデルと現地調 査により作成した軸組モデルを例示する.

図 2 点群モデルと軸組モデル

点群モデルから略伏図までの作成フローを2階柱・梁 略伏図を例として図 3 に示す.点群モデルを 2D 化 して得られたレベル・通りの断面をトレースして各種 の図面を作成した.なお,点群モデルでは不明瞭な一 部の柱・梁位置等の情報は,軸組モデルを活用した.

図 3 図面の作成フロー

点群モデルでは同じ部材の中でも場所によってやや 断面寸法が異なる場合もあるため,主要構造部材(柱・ 桁梁等)の断面寸法及び層間変位の測定位置を図 4 に 示すように定めた.各部材の断面寸法は,部材中央付 近で定めた.主屋,下屋の各階の層間変位は,2 階梁及 び小屋梁の上端と柱脚の図 4 上で左端における鉛直 線との水平距離と定めた.層間変形角は,層間変位を 各層の階高で除して算出した.

図 4 断面寸法及び層間変位の測定図

2.3 調査結果

図 5~図 8 にそれぞれ 1F 柱-梁略伏図, 2F 柱-梁 略伏図,屋根伏図,Y23 通りの軸組図を示す.なお,通 り符号は主要な符号のみ記載する.図 6 に赤枠と青 枠で示す場所がそれぞれ主屋と下屋である.表 2 に は,主要構造部材の断面寸法を示す.なお,点群モデ ルより得られた寸法が各材の平均的な寸法と比べ明ら かに大きいものは,装飾・仕上げ材等の影響が大きい として含めていない.

主屋は、2 階建てである.1,2 階の階高はそれぞれ 3.8 m (GL ~ 2 階梁上端間), 2.5 m (2 階梁上端~ 小屋梁上端間)である.小屋組は、キングポストトラス で構成されている.屋根は、葺き土を有する桟瓦葺き で、葺き土の下には小幅板が敷き詰められており、小 幅板の下に垂木が約 400 mm ピッチで配置されてい る.1 階の床はコンクリートが打たれており、2 階は木 板を用いている.2 階の大梁の断面は 149 mm×291 mm ~ 261 mm×518 mm 程度と様々であった.

主屋部分の 1 階柱は桁行方向(Y 方向)に X17 通り で概ね 1 m, X05 通りで概ね 2 m 間隔で配置されて いるが, X13 通りでは概ね 6 m 間隔と大きい.2 階柱 は全ての通りで概ね 1 m 間隔で配置されている.また, 1 階柱の断面寸法は, 179 mm ~ 366 mm 角程度と 比較的大きく, 写真 1 に示す通り礎石建ちである.壁 は, 土塗り壁で X01 通りおよび Y01 通りの外壁は 大壁であるが, それ以外すべて真壁となっている. 柱 梁接合部は, 写真 2 に示すように京呂組となってい る.図 5 に示す筋かいは桁と接合しており, 接合部に 金物を用いていることから耐震補強用に後付けされた ものと考えられる.下屋は,図 6 に青枠に斜め線で示 す範囲が中 2 階となっている.中 2 階の階高(GL ~ 中 2 階梁上端間)は 2.2 m 程である.小屋組は主 屋の 2 階柱に下屋梁を架けるかたちとなっている.

表 3 に主要な通りの現況の層間変形角を示す. 主 屋の梁間方向(X 方向)の最大層間変形角は, 1 / 24 rad である. 下屋の梁間方向(X 方向)の最大層間変 形角は 1 / 16 rad と非常に大きく, 下屋の最大層間変 形角は主屋と比較して 1.5 倍大きいことがわかる.

写真 1 柱脚接合部

写真 2 柱梁接合部

表 2 主要構造部材の断面寸法

部材名	最小値(mm)	平均値(mm)	最大値(mm)
1階柱	179mm角	246mm角	366mm角
2階柱	110mm角	142mm角	186mm角
2階大梁(幅×せい)	149mm×291mm	211mm×388mm	261mm×518mm
3階大梁(幅×せい)	154mm×226mm	162mm×244mm	178mm×282mm

表 3 現況の層間変形角

部材名	階高(mm)	最大層間変形量(mm)	最大層間変形角(rad)
1階X05通り	3800	78	1/49
1階X13通り	3800	159	1/24
1階X17通り	3800	235	1/16
2階X05通り	2488	97	1/26
2階X13通り	2488	67	1/37

3. 解析モデルの構築

3.1 解析モデルの概要

解析モデルは、図 8 に示す主要構面(Y23 通り)か ら下屋を取り除いた主屋の平面骨組モデルである.下 屋は重量比にして、建物全体の 18% 程であるが本研 究では簡単化のため省略した.図 9 に示すように、柱 梁架構は梁要素とし屋根部材はトラス要素で構築した. 柱脚の接合部は、礎石建ちであり滑りはないと仮定し てピン接合としている.柱梁接合部は梁勝ちとし、柱 と梁は短ほぞ接合と仮定した.短ほぞの回転剛性は、 文献 1)に基づき、1/120 rad 時のせん断耐力の値か ら 24.6 kN·m/rad と定める.断面は、表 2 に示した 断面寸法の平均値を有するものとし、樹種は全てスギ とする.スギの曲げヤング係数は、文献 2)に基づき、 H1 サイズの平均値 7.21 kN/mm² を使用する.

3.2 節点荷重の算出

鉛直荷重は,表4 に示す単位面積あたりの重量に 各節点の負担面積を乗じて設定した.表4 は,建築基 準法施行令第84条を主として,建物特有の重量は新 たに値を算出して作成した.具体的に,屋根の重量は, 瓦ぶき(葺き土あり)として,屋根勾配(6 寸勾配)に よる補正値やトラス部材の重量も考慮して算出した. トラス部材は,文献3)に基づきスギの密度を0.38 g/cm³とし,体積から概算した.土塗り壁の重量は, 各通りの土塗り壁の厚みに応じて,建築基準法に記さ れた「木造の建築物の小舞壁」の値が基準壁厚(60 mm) であることを考慮して定めた.積載荷重は,建築基準 法施行令第85条に基づき,集会場の地震力時の構造 計算用である2100 N/m²を用いた.

部位	部材	固定荷重(N/m²)	補正値	仕様
E +8	瓦ぶき(葺き土あり)	980	×1.16	下地及び垂木を含み、母屋を含まない
(し ニ コ 右)	母屋(2m以下)	50	-	
(トノス有)	トラス部分	171	-	
	Σ固定荷重(N/m ²)			1358
屋根	瓦ぶき(葺き土あり)	980	×1.16	下地及び垂木を含み、母屋を含まない
(トラス無)	母屋(2m以下)	50	-	
	Σ固定荷重(N/m ²)			1187
151 (MAR) (MAR) # (1)	木造の建築物の壁の軸組	150	-	柱・間柱及び筋かいを含む
IF工 空り 壁 (XU5 通り)	土塗り壁(232mm)	2629	-	壁厚1mmにつき11.3N/mm²とする
	Σ固定荷重(N/m²)			2779
151-201-00(//1728-0)	木造の建築物の壁の軸組	150	-	柱・間柱及び筋かいを含む
IF工堂り堂(X17通り)	土塗り壁(145mm)	1643	-	壁厚1mmにつき11.3N/m²とする
	Σ固定荷重(N/m²)			1793
26十余川時(V067番川)	木造の建築物の壁の軸組	150	-	柱・間柱及び筋かいを含む
2F工堂り堂(X05通り)	土塗り壁(191mm)	2165	-	壁厚1mmにつき11.3N/mm²とする
	Σ固定荷重(N/m ²)			2315
2011年後日時(112)茶日)	木造の建築物の壁の軸組	150	-	柱・間柱及び筋かいを含む
2F工堂り堂(X13通り)	土塗り壁(152mm)	1723	-	壁厚1mmにつき11.3N/mm²とする
	1873			
	板張り	150	-	根太を含む
2F床	床梁(梁間8m以下)	250	-	
	積載荷重	2100	-	集会場の地震力算定時
	Σ固定荷重(N/m ²)			2500

表 4 各部位における単位面積あたりの重量

負担面積は、2.3 節で前述の柱間隔の違いを考慮し、 隣接する柱及び梁に囲まれた領域の半分とする.図 10 に示す荷重節点は、屋根は合掌材と束又は陸梁の 節点位置、床は大梁が小梁を受ける箇所とした.水平 荷重は,鉛直方向の節点荷重に各層ごとに作用する地 震層せん断力係数を乗じて設定した.地震層せん断力 係数は,建築基準法に基づき,建築物の各層における 重量から算定した.図 10 に,地震層せん断力係数の 値を各節点毎に記載している.

図 9 解析モデルの概要 図 10 作用する節点荷重

4. 感度解析

4.1 解析手法

感度解析では、図 9 に示すモデル(以下, 元モデル) に対して, 変動因子を柱頭・柱脚の接合部の回転剛性 とし, 各接合部が耐震性能に与える影響を把握するこ とを目的とした. その指標として, 線形のフレーム解 析を用いて層間変形角 1/120 rad 時のベースシア係 数及び固有値を算定した. 層間変形角は, 1 階柱 X13 通りを対象とする. 感度解析に使用するモデルは, 回 転剛性の影響をより反映させるため, 1 接合部毎に剛 接合として感度解析を行った. 今回, 感度解析に使用 する (元モデル)及び (1-a)~(2-d) についての一 覧表を表 5 に記す.

(元モデル)	(1-a)	(1-b)
(元モデル)		
(1-c)	(1-d)	(2-a)
(2-b)	(2-c)	(2-d)
2時113柱期因定	2琳X05柱纲因定	2株113柱頭固定

表 5 感度解析モデル一覧

4.2 解析結果

表 5 に示したモデルの解析結果としてベースシア 係数,固有周期,応力図,固有モードを算出した.例と して,元モデルの解析結果を図 11 に示す.

図 11 元モデル解析結果

表 6 は,全ての感度解析モデルに対して解析した 結果をベースシア係数と固有周期,最大モーメントの 観点でまとめたものである.

+	C	同じ	÷.	点 刀	+=	. * ±	Ħ
衣	0	恣	凒	炿牛	们	不百	禾

	*	1次固有周期	2次固有周期	最大モーメント[該当箇所]		
モデル名	ヘースシア係数	(sec)	(sec)		(kNm)	
(元モデル)	0.006	13.21	2.22	38	[2階梁中央部]	
(1-a)	0.250	2.67	1.76	152	[1階柱X05柱脚]	
(1-b)	0.250	2.67	1.76	152	[1階柱X13柱脚]	
(1-c)	0.127	3.04	1.99	87	[2階梁中央部]	
(1-d)	0.173	3.04	1.99	110	[2階梁右端]	
(2-a)	0.006	13.19	1.13	38	[2階梁中央部]	
(2-b)	0.006	13.19	1.13	37	[2階梁中央部]	
(2-c)	0.006	13.19	1.15	38	[2階梁中央部]	
(2-d)	0.006	13.19	1.15	38	[2階梁中央部]	

表 6 から、1 階柱の固定度を変化させた際には、ベ ースシア係数と固有周期どちらの面を見ても建物全体 の剛性が大幅に向上することが読み取れる. ベースシ ア係数が最も向上するモデルは(1-b)であり、元モデ ルと比較して 40 倍程になることがわかる. これは、柱 脚の固定により柱にモーメントが集中するため、柱の 曲げ剛性が有効に働いているためである. 一方で、(1d)のように柱頭の回転剛性を変更した際には、断面性 能のよい大梁に効果的にモーメントを伝達しているこ とがわかる. 2 階柱の接合部分を変化させた際には、 ベースシア係数と 1 次固有周期には影響がほとんど 現れないが 2次固有周期に変化が現れることがわかる.

元モデルの算定結果に関して,設計用標準せん断力 係数と比較してベースシア係数がかなり低い値を示し ていると言える.これは,柱の傾斜復元力を考慮して いないことや耐力壁のない構造上弱い構面を抜き出し ていること等が理由として上げられる.

5. 耐震補強の検討

5.1 耐震補強案

感度解析の結果を踏まえ、本研究では 1 階柱に焦 点をあてた耐震補強案を提示する.検討には、ホール ダウン金物(以下, HD 金物)と方杖を用いた.表 7 に 3 種類の補強案を提示する. HD 金物の回転剛性は、 文献 4)に基づき、短ほぞを含み層間変形角 1/120時の 61.1 kN·m/rad とした. 方杖は、120 角のスギ材として トラス要素と設定した.この際,縦ヤング係数は曲げ ヤング係数と同様に,7.21 kN/mm² とした.

表 7 補強案一覧

(補強案-1)	(補強案-2)	(補強案-3)
	4. 頭部 印金物	在頭部 ID企物

5.2 耐震補強を含む解析結果

感度解析と同様に、解析した結果を表 8 に示す.

表 8 補強モデルの解析結果

	· · · · · · · · / / · · · · ·	1次固有周期	2次固有周期	最大モ・	-メント[該当箇所]
モナル石	ハースシア派数	(sec)	(sec)		(kNm)
(補強案-1)	0.584	2.49	1.23	151	[1階柱X13方杖部]
(補強案-2)	0.016	8.51	1.73	37	[2階梁中央部]
(補強案-3)	0.032	5.98	1.73	37	[2階梁中央部]

表 8 から方杖を用いた(補強案-1)は,(補強案-2) と比較して約 50 倍ベースシア係数が向上すること がわかる.方杖により,変形は抑えられるが,柱との 接合部には力が集中してしまうこともわかる.HD 金 物を用いた際,1/120 rad 時では,柱頭部補強箇所の 回転剛性が元モデルの約 2 倍となるが解析結果に大 幅な数値の変化は見られず,補強効果が薄いと推定 できる.

6. まとめ

主な知見を以下に示す.

本研究では、初めに伝統的木造建築の 3D スキャン を活用した構造調査を紹介した.続いて、接合部の回 転剛性を変動因子として実施した感度解析から各接合 部がベースシア係数,固有周期に与える影響を確認し た.さらに、耐震補強案を提示し耐震性能を推定した.

- 構造調査の結果から、3D スキャンを用いることで、 各種の図面を用意し、その情報から主要構造部材の 断面寸法、層間変形角等を把握した。
- 2) 感度解析の結果から、1 階柱の接合部では、回転剛性の変化が全体の耐震性能に大きく影響を与えた。
 2 階柱の接合部では、回転剛性の変化がベースシア係数、1 次固有周期に与える影響は少ないが、2 次固有周期に影響が現れた。
- 3) 耐震補強の結果から, 層間変形角 1/120 rad 時で は、ホールダウン金物と比較して方杖を用いること の有効性が確認された.

参考文献

- 木造軸組構法建物の耐震設計マニュアル編集委員会:伝統構法を生 かす木造耐震設計マニュアル
- 2) 強度性能研究会: 「製材品の強度性能に関するデータベース」
- 3) 日本建築学会:建築物荷重指針·同解説(2015)
- 4) 真崎雄一,佐藤利昭,井口道雄:木造軸組構法における制振構造の研究: 粘弾性制振装置を含む架構の静的解析モデル(その1),日本建築学会 大会学術講演梗概集(東北),2009.8